WEST MAUI WATERSHED STUDY POSSIBLE SOLUTIONS FOR SEDIMENT MANAGEMENT

WEST MAUI RIDGE TO REEF INITIATIVE PUBLIC MEETING

Thursday, August 30th, 2018, 6:00 PM

Veterans Memorial Center, Lahaina, Hawaii

Jessie Pa'ahana, Project Manager

Jessica Brunty, P.E., Hydraulic Engineer

Mitchell Moore, Ph.D., Hydraulic Engineer

Honolulu District, U.S. Army Corps of Engineers

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

......

PURPOSE/AGENDA

Purpose: Gather community input on possible solutions to managing sediment in West Maui watersheds

Agenda:

- 1. Understanding the Sediment Problem
- 2. Discussion of Alternative Solutions
- 3. Feedback/Q&A
- 4. Contact Info

UNDERSTANDING THE SEDIMENT PROBLEM

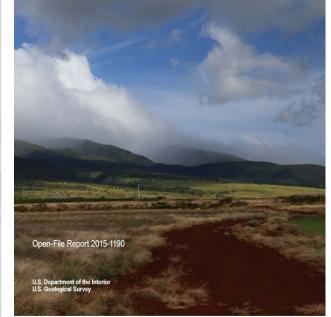
SEDIMENT PLUMES

A. Fleming Beach (foreground), Honolua Bay at top

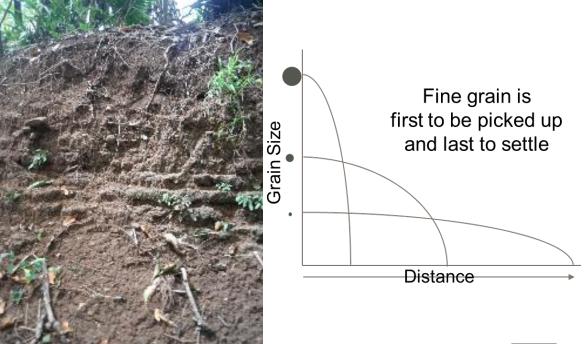
B. Honolua Bay

C. Honokowai Stream

D. Honokowai looking south



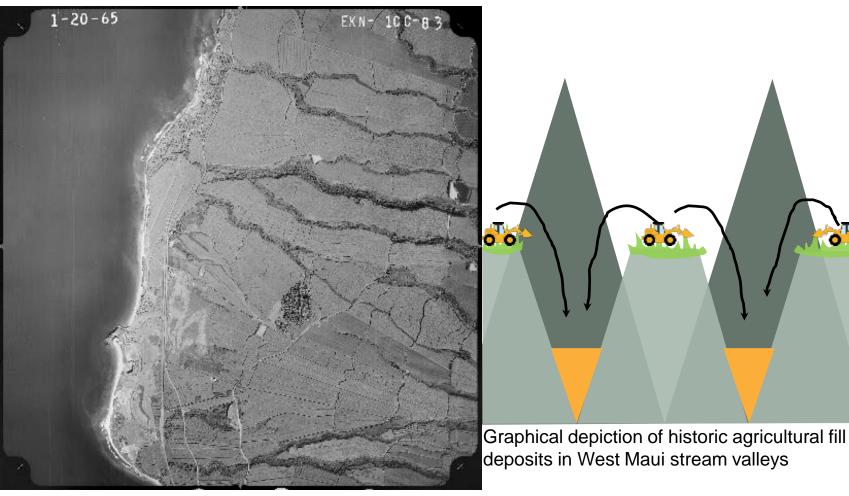
Question: Where do these sediment plumes come from?


IN-STREAM EROSION

ISGS

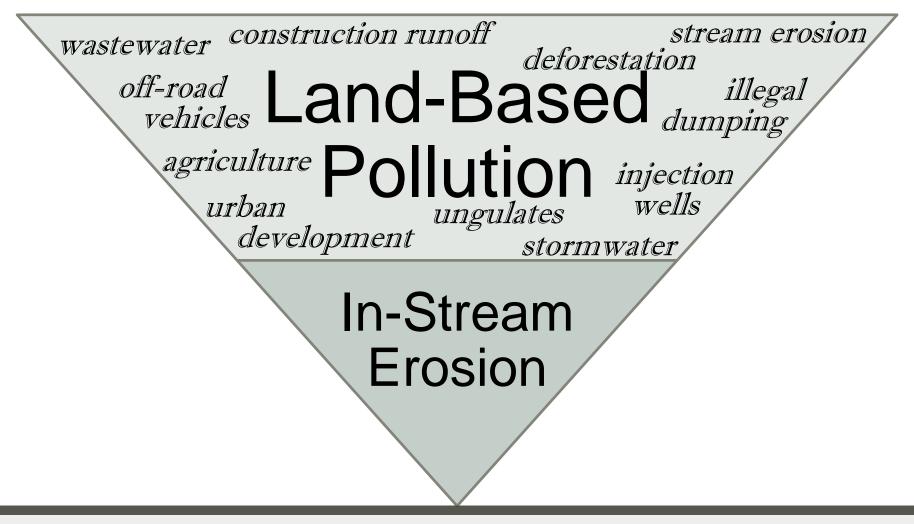
Reconnaissance Sediment Budget for Selected Watersheds of West Maui, Hawai'i

USGS OFR 2015-1190. Stock, Falinski, and Callender. Answer: The greatest source of sediments in West Maui comes from erosion of streambank agricultural fill deposits.



Eroding stream banks

AGRICULTURAL FILL TERRACES


Historic aerial image of Agricultural fields in West Maui

00

STUDY FOCUS

Sediment plumes are bad. Fine-grain sediment plumes are *worse*. Our goal is to find solutions for reducing in-stream sediment transport, especially fine-grain silts/clays, **before** it reaches the ocean.

NEXT STEPS:

- 1. Develop Alternatives: Based on data collected by R2R, develop first set of solutions. Stakeholder/public to provide feedback/input (current). Develop solution details. Model solutions.
- 2. Analyze Costs: Study will provide a cost-benefit analysis to shape recommendations for cost-effective solutions.

	Plan	Cost	Sediment Reduction
ple	А	\$250,000	10%
Example	В	\$1,000,000	30%
ЖЦ	С	\$50,000,000	40%
	D	\$250,000,000	50%

3. Funding/Construction: USACE study recommendations can support State/County planning efforts and decisions. The State, COM and other agencies could fund construction, implementation and maintenance of the alternatives recommended by USACE. USACE involvement ends with the study.

Goal: Complete study within 2 years

DISCUSSION OF ALTERNATIVE SOLUTIONS

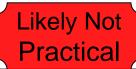
Note: Ideas are conceptual and will be further developed through the study.

RETROFIT / REDESIGN EXISTING BASINS

Practical

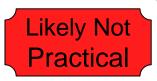
Action:	Improve existing infrastructure to ensure basins have max capacity and effectively capture sediment; currently basins are not functioning optimally; when overtopped, conveys fine sediments to ocean		
Pros:	Less invasive, minimal new construction, minimal environmental impact, existing maintenance program, less costly than new construction		
Cons:	Permitting; increased maintenance cost for COM		
Locations:	Best: Honokowai and Kahana Nui Possible: Napili 2-3, Napili 4-5, Kaopala, Mahinahina		

FLOCCULATING BASINS



Action:	Construct upstream basins retrofitted with flocculants (promotes clumping of fine sediments) to reduce transport of fines		
Pros:	Minimal construction, used extensively in wastewater and construction applications, can expand upon existing maintenance program		
Cons:	Unsure of environmental consequences, unsure demands, novel use in Hawai'i	of maintenance	• •
Locations:	All Existing Basins are potential candidates	US Army Corps of Engineers ®	U.S.ARNY

Action:	Install pumps to divert high stream flows into temporary geotextile bag structures that filter stream flow to remove fines and pass water		
Pros:	Minimal new construction, existing maintenance program, extensive application for dewatering		
Cons:	Unsure of use in large-scale, long-term application, potential impacts to aquatic life e.g .entrainment, unsure of maintenance demand		
Locations:	Existing Basins US Army Corps of Engineers * U.S.ARNY))	


STORM DISCHARGE PIPE

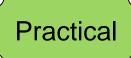
Action:	Construct a pipe to convey streamflow and sediments past nearshore coral reefs
Pros:	Bypasses nearshore reefs, minimal land disturbance
Cons:	Permitting challenge, potentially significant environmental impacts e.g. deepwater corals, unsure of maintenance demands, does not reduce sediment loading of ocean, only relocates discharge point

CONVERT IRRIGATION DITCH TO FLOOD CHANNEL

Action:	Passively route high flow into a single watershed/sediment basin du heavy rains	ring
Pros:	Single site for sediment management, modify existing ditch system	
Cons:	Major construction = high cost, environmental impacts	U.S.ARNY

ALL-TERRAIN VEHICLE AND VACUUM

Action:	Manually remove sediment deposits from the source		
Pros:	Remove sediment source, minimal new construction (e.g. temporary access), minimal environmental consequences		
Cons:	Accessibility issues for heavy equipment, unknown volume, unsure of bank stability post-removal		


TRADITIONAL HAWAIIAN PRACTICES

Action:	Construct or restore lo'i terraces; use historically proven methods/structures for sediment management		
Pros:	Historic success, minimal environmental consequences, embraces cultural values, agricultural production, soft alternative		
Cons:	Not successful at managing large storm events, water rights issues, access challenges, requires manpower for operation/maintenance		
Locations:	Possible: Honokowai, Honolua))	

RE-PURPOSED FLOODPLAIN

Action:	Utilize available floodplain space to hold stormwater and sediment.		
Pros:	Available space in some locations, minimal environmental consequences, soft alternative, limits/prevents development in floodplain, can provide multi-use and recreational opportunities.		
Cons:	Potential water rights issues, access challenges, for operation/maintenance	requires man	power
Locations	Possible: Wahikuli	US Army Corps of Engineers *	U.S.ARNY

COMMUNITY FEEDBACK

For each alternative, consider:

- 1. Will this solution work? Any additional pros/cons USACE should consider?
- 2. Where (location) would this solution work best?

QUESTIONS?

CONTACT INFORMATION

Jessie Pa'ahana, Project Manager/Environmental Compliance Specialist Civil & Public Works Branch, Honolulu District, USACE E: jessie.k.paahana@usace.army.mil P: (808) 835-4042

Mitchell Moore, Ph.D., Hydraulic Engineer/Technical Lead Civil Works Technical Branch, Honolulu District, USACE E: mitchell.f.moore@usace.army.mil P: (808) 835-4148

